欧美日韩亚洲精品瑜伽裤,无码熟妇人妻AV在线网站,国产精品打着电话偷着情,99久无码中文字幕一本久道

全國服務(wù)咨詢熱線:

18457147929,13867128415

article技術(shù)文章
首頁 > 技術(shù)文章 > 基于改進(jìn)的YOLO系列算法的溫室葫蘆科果實實時檢測

基于改進(jìn)的YOLO系列算法的溫室葫蘆科果實實時檢測

更新時間:2024-08-07      點擊次數(shù):291

   基于改進(jìn)的YOLO系列算法的溫室葫蘆科果實實時檢測

水果和蔬菜通常對人類健康很重要,因為它們富含許多營養(yǎng)素,包括鉀、葉酸、維生素 C、膳食纖維等。隨著日益增長的果蔬需求,農(nóng)業(yè)機器人成為收獲、修剪、

局部噴施等栽培任務(wù)中的熱門手段,這促進(jìn)了果蔬檢測圖像分析和計算機視覺方法的發(fā)展。然而,復(fù)雜溫室環(huán)境下的葫蘆科果實時檢測算法存在諸多挑戰(zhàn),

如葉片遮擋、果實重疊、逆光、正光等等都是其中的挑戰(zhàn)之一。與此同時,果實檢測算法被期望具有通用性、輕量級、準(zhǔn)確和快速的特點。

為此,本研究提出了一種改進(jìn)的YOLO序列檢測算法用于溫室葫蘆科果實檢測,并與YOLOv4、YOLOv5算法進(jìn)行了比較。研究采用高光譜相機采集了苦瓜、黃瓜、甜瓜和博洋蜜瓜的果實圖像(共2469張,分別為665、664、404和736張),其中包含葉片遮擋、果實重疊、枝干遮擋、背光、正光等各種環(huán)境條件的圖像(如圖1所示),

并將其隨即劃分為訓(xùn)練集80%、驗證集15%和測試集5%。由于輕量級的YOLOv4、YOLOv5檢測速度快,本研究以此作為框架,在此基礎(chǔ)上,Neck網(wǎng)絡(luò)

(如圖3所示)采用路徑聚合網(wǎng)絡(luò)(PANet)和特征金字塔網(wǎng)絡(luò)(FPN)分別將YOLOv4和YOLOv5的骨干殘差塊排列從1、2、8、8、4改進(jìn)為2、3、4、3、2,F(xiàn)、3、9、9、3改進(jìn)為F、3、4、3、2(如圖2和表1所示)。結(jié)果表明,與YOLOv4和YOLOv5的Backbone相比,改進(jìn)后的Backbone的檢測精度更高,速度更快。添加PANet的頸部的準(zhǔn)確度高于FPN,但FPN的檢測時間較少。在所測試的改進(jìn)算法中,YOLOv4RPANet檢測結(jié)果的平均準(zhǔn)確率為91.5%,平均檢測時間為5.0 ms,優(yōu)于YOLOv4和YOLOv5(如表2所示)。盡管存在差異,其他改進(jìn)的YOLO系列檢測算法也是輕量級的,在更好的泛化性、實時檢測果實以及偽標(biāo)簽生成器方面具有巨大前景,適用于采摘/收獲機器人。

6f3ef6f5b8879489b8e904c1bdb9fe0c_20231120164012612.png

                           圖1 各種條件下的果實圖像:(a)被葉片遮擋;(b)重疊;(c)被枝干遮擋;(d)b背光;(e)正光;(f)YOLO注釋規(guī)則,包含對象類、坐標(biāo)、高度和寬度。

b0122753f6aaa369ad8885b5a7acf73b_20231120164043915.png

                                                                             圖2 研究采用的改進(jìn)(a)YOLOv5和 (b)YOLOv4 Backbone的果實檢測算法。


3e6aff419e7944c32de65b3147fd5729_20231120164106830.png

                                                                                                     圖3 (a)FPN和(b)PANet的Neck網(wǎng)絡(luò)。



                                                                                                   表1 研究所采用的訓(xùn)練模型的總結(jié)


5c74bf7cfa5464e5c529c7c754f08e54_20231120164142348.png



                                                                                                            表2 YOLO系列檢測算法的平均結(jié)果

4cce6a88f563433dad405f6ed40ed333_20231120164303756.png



浙江以象科技有限公司
地址:浙江省溫州市鹿城區(qū)藤橋鎮(zhèn)南市中路155號七樓
郵箱:510433896@qq.com
關(guān)注我們
歡迎您關(guān)注我們的微信公眾號了解更多信息:
歡迎您關(guān)注我們的微信公眾號
了解更多信息
人妻互换精品一区二区| 掀开奶罩边躁狠狠躁视频0000| 国产又粗又猛又爽又黄的视频| 亚洲爆乳精品无码一区二区三区| 日韩欧美亚洲国产精品字幕久久久 | 亚洲国产精华液2020| 国产av躁一二三区免费播放| 高大丰满肥熟妇丰满大白屁股| 免费萌白酱国产一区二区三区| 欧美av| 国产网红女主播精品视频| 特黄做受又硬又粗又大视频小说| 精品亚洲成A人7777在线观看 | 超碰97免费人妻| 无码少妇一区二区三区芒果| 肥白大屁股BBWBBWHD| 亚洲精品无码一区二区| 一出一进一爽一粗一大视频| 久久久综合香蕉尹人综合网| 最近免费中文字幕中文高清6| 美女高潮黄又色高清视频免费| 精品无码三级在线观看视频| 国产成人精品亚洲线观看| 熟女性饥渴一区二区三区| 亚洲 欧美 自拍 另类 日韩| 齐天大性之大闹盘丝洞| 蜜臀AV人妻久久无码精品麻豆| 女人下边被添全过视频| 久久AV无码精品人妻出轨| 色婷婷综合久久久久中文| 风韵少妇性饥渴推油按摩视频 | 欧美ZC0O人与善交另类A片| 色欲久久综合亚洲精品蜜桃| 办公室双腿打开揉弄高潮淑芬| 国产成人精品无码一区二区| 亚洲AV无码一区二区三区DV| 波兰小妓女BBWBBW| 免费做爰猛烈吃奶摸视频在线观看 | 国产毛多水多做爰爽爽爽| 一本色道久久88加勒比—综合| 国产精品67人妻无码久久|